Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Direct electron detectors in scanning transmission electron microscopy give unprecedented possibilities for structure analysis at the nanoscale. In electronic and quantum materials, this new capability gives access to, for example, emergent chiral structures and symmetry-breaking distortions that underpin functional properties. Quantifying nanoscale structural features with statistical significance, however, is complicated by the subtleties of dynamic diffraction and coexisting contrast mechanisms, which often results in a low signal-to-noise ratio and the superposition of multiple signals that are challenging to deconvolute. Here we apply scanning electron diffraction to explore local polar distortions in the uniaxial ferroelectric Er(Mn,Ti)O3. Using a custom-designed convolutional autoencoder with bespoke regularization, we demonstrate that subtle variations in the scattering signatures of ferroelectric domains, domain walls, and vortex textures can readily be disentangled with statistical significance and separated from extrinsic contributions due to, e.g., variations in specimen thickness or bending. The work demonstrates a pathway to quantitatively measure symmetry-breaking distortions across large areas, mapping structural changes at interfaces and topological structures with nanoscale spatial resolution.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Binary neural network (BNN) delivers increased compute intensity and reduces memory/data requirements for computation. Scalable BNN enables inference in a limited time due to different constraints. This paper explores the application of Scalable BNN in oblivious inference, a service provided by a server to mistrusting clients. Using this service, a client can obtain the inference result on his/her data by a trained model held by the server without disclosing the data or learning the model parameters. Two contributions of this paper are: 1) we devise lightweight cryptographic protocols explicitly designed to exploit the unique characteristics of BNNs. 2) we present an advanced dynamic exploration of the runtime-accuracy tradeoff of scalable BNNs in a single-shot training process. While previous works trained multiple BNNs with different computational complexities (which is cumbersome due to the slow convergence of BNNs), we train a single BNN that can perform inference under various computational budgets. Compared to CryptFlow2, the state-of-the-art technique in the oblivious inference of non-binary DNNs, our approach reaches 3 × faster inference while keeping the same accuracy. Compared to XONN, the state-of-the-art technique in the oblivious inference of binary networks, we achieve 2 × to 12 × faster inference while obtaining higher accuracy.more » « less
-
Abstract Ferroelectrics, due to their polar nature and reversible switching, can be used to dynamically control surface chemistry for catalysis, chemical switching, and other applications such as water splitting. However, this is a complex phenomenon where ferroelectric domain orientation and switching are intimately linked to surface charges. In this work, the temperature‐induced domain behavior of ferroelectric‐ferroelastic domains in free‐standing BaTiO3films under different gas environments, including vacuum and oxygen‐rich, is studied by in situ scanning transmission electron microscopy (STEM). An automated pathway to statistically disentangle and detect domain structure transformations using deep autoencoders, providing a pathway towards real‐time analysis is also established. These results show a clear difference in the temperature at which phase transition occurs and the domain behavior between various environments, with a peculiar domain reconfiguration at low temperatures, from a‐c to a‐a at ≈60 °C. The vacuum environment exhibits a rich domain structure, while under the oxidizing environment, the domain structure is largely suppressed. The direct visualization provided by in situ gas and heating STEM allows to investigate the influence of external variables such as gas, pressure, and temperature, on oxide surfaces in a dynamic manner, providing invaluable insights into the intricate surface‐screening mechanisms in ferroelectrics.more » « less
-
This paper proposes AdaTest, a novel adaptive test pattern generation framework for efficient and reliable Hardware Trojan (HT) detection. HT is a backdoor attack that tampers with the design of victim integrated circuits (ICs). AdaTest improves the existing HT detection techniques in terms of scalability and accuracy of detecting smaller Trojans in the presence of noise and variations. To achieve high trigger coverage, AdaTest leverages Reinforcement Learning (RL) to produce a diverse set of test inputs. Particularly, we progressively generate test vectors with high ‘reward’ values in an iterative manner. In each iteration, the test set is evaluated and adaptively expanded as needed. Furthermore, AdaTest integrates adaptive sampling to prioritize test samples that provide more information for HT detection, thus reducing the number of samples while improving the samples’ quality for faster exploration. We develop AdaTest with a Software/Hardware co-design principle and provide an optimized on-chip architecture solution. AdaTest’s architecture minimizes the hardware overhead in two ways: (i) Deploying circuit emulation on programmable hardware to accelerate reward evaluation of the test input; (ii) Pipelining each computation stage in AdaTest by automatically constructing auxiliary circuit for test input generation, reward evaluation, and adaptive sampling. We evaluate AdaTest’s performance on various HT benchmarks and compare it with two prior works that use logic testing for HT detection. Experimental results show that AdaTest engenders up to two orders of test generation speedup and two orders of test set size reduction compared to the prior works while achieving the same level or higher Trojan detection rate.more » « less
An official website of the United States government
